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Abstract—An analysis is made of heat transfer from a plate fin, which is cooled by forced or natural

convection. Approximate expressions are used to relate convective heat flux and temperature in the case of

laminar and turbulent boundary layer in forced flow and in the case of natural convection in a vertical fin. A

simple solution procedure is presented to solve conjugated heat transfer composed of conduction in a fin and

convection from it. Meaningful heat transfer results are obtained when heat transfer of an actual fin is

compared with an ideal isothermal fin. It was found that one curve is enough to present heat transfer results
without parameters.

NOMENCLATURE transfer coefficients are given (see e.g. Kern and Kraus
c constant for natural convection in [1]} Even for a prescribed varying heat transfer
equation (4); coefficient solution can be easily obtained numerically.
C constant for turbulent convection in 1IN actual practice, however, convective heat transfer
equation (1); from a fin and conduction along it can not be solved
g, acceleration of gravity; separately, but they are coupled together. The perlgm
k, thermal conductivity of fin; considered in this paper is schematlcal!y shown in Fig.
k, thermal conductivity of fluid; 1, which presents a plane fin of thickness 2t and
l, transverse length of fin;
m, n, constants in equation (1);
Pr, Prandtl number ;
q, convective heat flux;
Re, Reynolds number, U x/v;
s, dummy variable in vertical direction;
t, fin half thickness;
T, fin temperature;
T,, fin base temperature ;
T o, free stream temperature;
U free stream velocity ;
X, vertical coordinate; |
Xy dimensionless coordinate for natural y ‘ T.
convection, equation (17); |
Xy dimensionless coordinate for forced flow, I
equation (10); y
¥y, transverse coordinate ; (a)
Vs dimensionless coordinate, y/I;
o Y, constants in equation (1);
B, volumetric expansion coefficient; x|
v, kinematic viscosity;
0, dimensionless temperature, /
(T—Tao)/(Tw_Tco); si".i
¢, b, local and total heat flux of fin; Sii —ﬁ/
&, ¢, local and total heat flux of an ideal s
isothermal fin; - 7
AT, temperature difference, T—-T,;
AT, base temperature difference, T,,— T .
Tix}-T,,
1. INTRODUCTION )
HEAT transfer analysis of extended surfaces with g ) Schematic presentation of the problem: (a)
different shapes is well known for the case, when heat coordinate system; (b) temperature approximation.
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transverse length I. The base surface temperature is
uniform and equal to T, and the fin is cooled by a fluid
at temperature T .

The analysis presented in this article deals with heat
transfer of a plane fin cooled by forced or natural
convection. In the case of natural convection only a
vertical fin is considered. For forced convection the
freestream velocity is equal to U, and both laminar
and turbulent boundary layers are included in the
analysis.

In the problem considered in Fig. 1(a) temperature
of the fin varies in the transverse direction and also it is
dependent on x. Convective heat transfer in the flow
direction could be solved if surface temperature is
known. Unfortunately, temperature distribution is
also affected by heat conduction in the fin. Thus we are
dealing with a complex conjugated heat transfer
problem, the solution of which can only be obtained by
solving conduction in the fin together with convective
heat transfer.

In this investigation an approximate treatment of
natural and forced convection is used to relate heat
flux and temperature. A simple procedure is presented
to solve the arising complex nonlinear differential
equation. It is noteworthy that dimensionless heat
transfer results of forced convection and also those of
" natural convection on a vertical fin are free of
parameters.

2. HEAT FLUX DISTRIBUTION FOR ARBITRARY
SURFACE TEMPERATURE

First the expressions of heat flux distribution
resulting from a known arbitrarily varying surface
temperature are given. These equations are used in the
forthcoming presentation when the solution
procedure of conjugated heat transfer in the fin is
developed.

Forced convection

In the case of forced convection it is well known that
the resulting heat flux corresponding to arbitrarily
varying surface temperature can easily be obtained
using an integral method and superposing technique.
It can be expressed quite accurately lor laminar and
turbulent boundary layer if Pr > 0.6 as [2]

4) = €L Ren Py f 1= (Y] AT (1)
0

The constants in equation (1) are for laminar
boundary layer: C = 0.332,m = 4{,n =4,y = and «
= 4 The corresponding values of constants for
turbulent boundary layer are: C = 0.0296,m = 4,1 =
3,7 = ¥5and & = 4. Integration of equation (1) is easily
made when surface temperature T, is approximated by
a series of straight lines as in Fig. 1(b) [2]. The
integrated form of equation (1) needed later is
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q(x) = C-LRe™ Pr"{ATO +x
X

<Ee)- o) @

In equation (2) AT, is the temperature difference at the
leading edge of the plate, k; = (T; — T;_,;)/(si — Si—y)

and
Si _ Siix _ try-a
G(;)— fo [1-&] 4t 3)

Natural convection

In the case of natural convection from a vertical
surface such a simple method as in forced flow, in
which case heat flux resulting from a prescribed surface
temperature could be found, is not possible.
Fortunately, Raithby and Hollands [3] have
succeeded in obtaining an approximate equation
relating surface temperature and heat flux. They used
the analogy between a condensate film and the inner
part of boundary layer in natural convection. For a
vertical surface with laminar boundary layer their
result can be written as

4 x -1/4
q(x) = ckf(g—lf- Pr)1 AT3?3 [f ATSB dx} 4)
Vv 0

which is applicable for Pr > 0.6. The constant ¢ in
equation (4) can be calculated very accurately using

(4]
~ 0.503
T [1+ (0492/Pryie]*®"

)

In Raithby and Hollands [3] a more complex
expression than equation (5) is used. In the case of a
polynomial surface temperature x” the accuracy of
equation (4) can be compared with the exact one. In
the case of a constant surface temperature equation (4)
gives an exact result, but when n > 0 it underestimates
heat flux. For instance, when heat flux density is
constant (n = 1) it gives the error of 4% with Pr = 1.

Equation (4) can be easily integrated if the variation
of temperature distribution is composed of straight
lines as in forced flow. It gives

1/4
q(x) = ckf(“i—f Pr)

n

eh

i=1

3 —1/4
s [AT?? — AT?ﬁ]} (6)
where

ki = (AT, — AT;_)/(s; — s:-1)-

If natural convection boundary layer is turbulent it
seems that heat transfer is not at least much affected by
a streamwise coordinate [5, 6]. In that case the
solution can be obtained by usual methods.
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3. FORMULATION OF THE MODEL
AND SOLUTION PROCEDURE

The energy balance of the fin in the conjugated heat
transfer problem of Fig. 1(a) involves heat conduction
within the fin in the x- and y-directions and an inflow
of heat from convective boundary layer. The
temperature and velocity distributions in the
boundary layer are three-dimensional. However, the
problem is simplified by assuming that convective heat
flux can be described using equation (1) for forced and
equation (4) for natural convection. This assumption is
analogous with the treatment of the condensate film in
Patankar and Sparrow [7]. Also if the vertical height
of the fin is substantially greater than the transverse
length I, the streamwise conduction in the fin is
negligible compared with the y conduction. With these
assumptions the thin fin energy balance can be written
as

T
5 q(x) =0 ™)
where convective heat flux g(x) is governed by
equation (1) in the case of forced convection and
respectively by equation (4) for natural convection.

Equation (7) cannot be solved without employing
the numerical technique. The first step in the search for
the solution is to form a finite difference grid of the fin
and guess the temperature distribution of the fin (see
Fig. 1). If temperature distribution is approximated by
straight lines, convective heat flux of the point i, j is
easily calculated from equation (2) for forced and from
equation (6) for natural convection. When heat flux
and temperature are known, the heat transfer
coefficient can be obtained. Now attention is paid to
the ith vertical row of the fin. Because heat transfer
coefficients are known at every point j, a standard finite
difference technique can be used to calculate the effect
of heat conduction in the y-direction and obtain a new
temperature distribution of the ith vertical row. This
kind of treatment is repeated in every vertical row of
the fin and as a result a new temperature distribution of
the fin is obtained. After comparing temperature
distribution obtained with that of the initial guess, the
procedure is repeated if deviation is too great. The
process is repeated until a sufficient degree of accuracy
is obtained.

k

4. RESULTS AND DISCUSSION

The method previously described gives the
temperature distribution of the fin and also heat
transfer rate, which often is the most interesting
quantity when dealing with extended surfaces. In the
present problem great generality of heat transfer
results can be achieved by comparing them with those
of an ideal isothermal fin whose temperature is
everywhere uniform and equal to the base temperature
T,,.
Forced convection

The temperature distribution of the fin is governed

by equation (7). In the case of forced convection it can
be changed into dimensionless form, which is free of
parameters, by using nondimensional variables
defined as

T_

- = 8
=TT, ®)
y,.=§ ©)

1 kt x (10)

* = Ck;PRe" Pr

The local heat flux to the fin from the base surface is
obtained from the temperature distribution. If only the
other side of the fin is considered the governing
equation for the local heat flux is

oT
ow-u(3),

The corresponding local heat flux of an isothermal fin
at the station x is written as

((3Y)

di(x) = cXt gemprraT (12)
X

By using dimensionless variables of equations
(8)—(10) the local heat flux ratio, if comparing the
actual fin with the ideal fin, is evaluated using
equations (11) and (12), with the r3sult

¢ _ ﬁ)
o X*(«m A

The overall rate of heat transfer ¢ from the base overa
height from 0 to x is calculated by integrating equation

(11)
* oT
= | kt|—) dx.
¢ L t<5)’>o X

Comparing the actual total heat transfer with that of
the ideal fin of height x, which is

(13)

(14)

k
¢, = C-LRe" Pr" AT, (15)
m

10
¢ | 1
s 1%
06} J

}. -
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FIG. 2. Local and overall fin heat transfer results. Forced
convection with laminar boundary layer.
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F1G. 3. Local and overall fin heat transfer results. Turbulent

boundary layer.

the ratio ¢/¢; using dimensionless variables follows as

) m LJX* L(@O)
—_—= Xm~—1 xi-m{ — | dx 16)
¢ 1-m * o X .

Calculated heat flux ratios from equations (13) and
(16) are shown in Figs. 2 and 3. Figure 2 presents the
results for the laminar boundary layer and Fig. 3 for
the turbulent boundary layer.

Natural convection

In the case of natural convection, equation (7) can be
transformed into a dimensionless form by introducing
dimensionless variables defined by equations (8) and
(9) and by using instead of equation (10) a variable

RYAs 1 kt \*
YT gBPr /AT, kf7 x

The local heat flux is again obtained from equation
(11). When dealing with natural convection, the local
heat flux of an isothermal surface at the station x is

o8\ ATS"
¢;(x) = Ckf (v_z Pr> xl—/4

(17)

I (18)

Comparing the local heat flux with equation (18) the
ratio ¢’/¢; can be expressed using dimensionless
variable of equation (17) as

& 1M(ae>
—=x — .
¢ T * \0y,

Equation (14) gives the total heat transfer from the
other side of the fin with a height x. The overall heat
transfer of an ideal fin is obtained from equation

(19)

(20)

v2

4 1/4
o, = 3(:kf<ﬁ Pr) AT x34 ],
Forming the dimensionless ratio ¢/¢; the final result
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FiG. 4. Heat transfer results for natural convection in a
vertical fin.

is obtained. The ratio of local flux in equation (19) and
that of overall heat transfer in equation (21) are plotted
in Fig. 4. Also in the case of natural convection
experiments were performed using an aluminium fin
with a thickness 0.5 mm and which was cooled by air.
It was found that experimental results were in
agreement with those of Fig. 4.

CONCLUSION

To summarize, the analysis given here predicts heat
transfer from a vertical plate fin cooled by natural or
forced convection. Very valuable results are obtained
by comparing local or total heat transfer with those of
an ideal isothermal fin and by using dimensionless
variables. It is found that heat transfer of a fin for
forced convection with laminar or turbulent boundary
layer and for natural convection with laminar
boundary layer can be expressed without parameters.
Using plotted results of Figs. 2, 3 and 4 actual heat
transfer of any fin can easily be evaluated.
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CONVECTION THERMIQUE NATURELLE OU FORCEE SUR UNE AILETTE PLANE

Résumé—On étudie le transfert thermique d’une plaque plane qui est refroidie par convection naturelle ou

forcée. On utilise des expressions approchées pour relier le flux convectif et 1a température dans le casde la

couche limite laminaire ou turbulente en écoulement forcé et dans le cas d’une convection naturelle dans une

ailette verticale. On présente une procédure simple de résolution pour le transfert thermique couplé de

conduction dans l'ailette et de convection sur elle. Des résultats sont obtenus dans la comparaison d’une

ailette réelle et d’une ailette isotherme idéale. On trouve qu’une simple courbe représente correctement les
résultats sans paramétres.

WARMEUBERGANG BEI FREIER UND ERZWUNGENER KONVEKTION AN EINER
EBENEN RIPPE

Zusammenfassung — Der Wirmeiibergang an einer durch erzwungene oder freie Konvektion gekiihlten
ebenen Rippe wird untersucht. Zur Verkniipfung des konvektiven Wirmestroms mit der Temperatur bei
laminarer und turbulenter Grenzschicht in erzwungener Stromung und bei freier Konvektion an einer
senkrechten Rippe werden Naherungsbeziehungen verwendet.

Zur Behandlung der verkniipften Wirmetransportvorginge durch Wirmeleitung in einer Rippe und
durch konvektiven Wirmeibergang wird ein einfaches Losungsverfahren vorgestellt. Der Vergleich des
Wirmetransports in einer tatsichlichen Rippe mit dem in einer ideal isothermen ergibt deutliche
Unterschiede. Es zeigt sich, daB zur Darstellung des Warmetransports eine Kurve ausreicht und daB keine

Parameter erforderlich sind.

TEMJIOOBMEH [1PU ECTECTBEHHOM M BbIHYXJIEHHOW KOHBEKLHH
HA TIJIOCKOM PEBPE

AHHOTAIMA — AHAJIH3APYSTCA TEMNOOOMEH Ha MIOCKOM peGpe, KOTOPOE OXAaXAaeTCHs MOCPEACTBOM
BBIHYX/JICHHON HJIH €CTECTBEHHOW KOHBCKIMH. YCTAHOBJICHbI NPHOMDKEHHBIE COOTHOLICHHS MEXAY
KOHBEKTHBHBIM TEMJIOBBIM NMOTOKOM M TEMIIEPATYPOH IA JIAMHHADHOTO H TypOyJeHTHOro norpa-
HUYHOTO CJIOSl IPH BBLIHYXKIEHHOM TEUCHHMH M JUIS €CTECTBEHHOH KOHBEKIMH Ha BEPTHKAJLHOM pebpe.
MpencraieHa MpocTas METOAHKA pacyéTa CONPAKEHHOTO TENIOOOMEHA, YUHTHIBAIOIIAS TEMIONPOBOI-
HOCTh pebpa M KoHBeKlUHIO Ha HEM. TlonydeHsl 3HAYMMBIE PE3YJILTAThl MO TENIOOOMEHY Id Ciyuas,
KOr[a TEIUIOOOMEH peanbHOro pebpa CpaBHHBAETCA ¢ HACAIbLHBIM H30TepMHYecKHM pebpom. ObHapy-
KEHO, YTO OJHOW KPHBOH AOCTATOYHO /IS MNPEACTAaBIEHHs De3ylbTaToOB MO TenjaoobMeny 6e3
napamMeTpos.
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